无忧论文网
当前位置: 无忧论文网 > 管理科学论文 > 行政政治论文 > 资源环境与城乡规划管理论文 > 热碱法预处理促进剩余污泥厌氧发酵生产挥发性脂肪酸
点击提交论文指导需求
高薪诚聘老师
热碱法预处理促进剩余污泥厌氧发酵生产挥发性脂肪酸
时间:2011-02-14 浏览次数:1223次 无忧论文网
点击这里在线咨询我
生物化工
污泥资源化污泥资源化
    随着污水处理行业的快速发展,污泥量的产生迅速增加,发展经济有效的污泥处理处置技术迫在眉睫。挥发性脂肪酸(Volatile Fatty Acids,VFAs),包括乙酸、丙酸、异丁酸、丁酸、异戊酸和戊酸等,是在污泥厌氧消化过程中产生的中间产物,可作为原料用于发酵工业生产多种高附加值产品。污泥厌氧发酵生产VFAs,能够有效利用污泥中的有机成分,是实现污泥资源开发的一条具有广阔应用前景的途径。然而,由于污泥絮体及微生物细胞壁屏障作用的存在,微生物胞内有机物难以在胞外水解酶的作用下有效释放并分解成小分子,从而限制了污泥厌氧发酵生产VFAs的速率及程度。本课题采用多种方法对污泥进行预处理,破坏污泥中微生物的细胞壁,使胞内有机质溶解,从而促进污泥厌氧发酵生产VFAs,并对其中的热碱法工艺过程进行较系统的优化,主要内容和结果如下:
    (1)考察了五种预处理方法对剩余污泥厌氧发酵生产VFAs的影响,分别为,加热法、碱处理法、超声波法,以及其组合:热碱法和超声波-碱法。所采用的预处理方法中,热碱法和超声波-碱法对污泥中溶解性蛋白质、溶解性碳水化合物以及溶解性化学需氧量(Soluble Chemical Oxygen Demand,SCOD)的提高效果明显优于加热法、碱处理法或超声波法。热碱法和超声波-碱法预处理过程能够使污泥中的碳水化合物、蛋白质等有机物大量溶解,为厌氧发酵生产VFAs提供充足的底物,从而促进污泥生产VFAs。经过热碱法和超声波-碱法预处理的污泥在发酵生产VFAs过程中48 h和60 h时TVFAs产量达到最高,分别为3.55 g/L和3.36 g/L,明显高于其它三种预处理方法。
    (2)使用均匀设计法对加碱量、预处理温度、预处理时间三个因素进行初步优化。均匀设计实验结果表明:当预处理条件为,温度90 ℃、加碱量14 g/L、时间120 min,即处理温度、加碱量和处理时间都取最大值时,产生的SCOD、溶解性碳水化合物和溶解性蛋白质浓度均为最高,但经该条件预处理后的污泥在发酵生产VFAs过程中所得的VFAs却十分有限。当以总VFAs(Total VFAs,TVFAs)产量为指标时,最适宜的预处理条件为,温度60 ℃、加碱量3 g/L、时间90 min,经过该条件预处理后的污泥在发酵48 h时所得的TVFAs浓度达到最高,为3.68 g/L。
    (3)通过单因素实验考察加碱量、预处理温度及预处理时间对污泥预处理过程和厌氧产酸过程的影响,并得到促进污泥生产VFAs的最优热碱预处理条件。单因素实验结果表明,SCOD、溶解性碳水化合物和溶解性蛋白质浓度均随加碱量、预处理时间、预处理温度的增大而增大。污泥厌氧发酵生产VFAs的最适热碱预处理条件为:加碱量2 g/L,预处理温度70 ℃,处理时间为60 min,经该条件预处理后的污泥在发酵48 h时TVFAs产量达到最高,浓度高达4.10 g/L。
     [英文摘要]:     In recent years, the amount of sewage sludge produced from municipal and industrial wastewater treatment plants has increased very rapidly. Sludge management has become an important issue. Volatile Fatty Acids (VFAs), i.e., acetic, propionic, iso-butyric, n-butyric, iso-valeric and n-valeric acids, important intermediate products of sludge anaerobic fermentation, are very useful chemic materials in industry. Anaerobic fermentation for VFAs production, which can effectively utilize organic components of sludge, has broad prospects for resource utilization of municipal sludge. Because of the presence of sludge flocs and cell wall barrier, intracellular organic compounds of sludge are difficult to be catalyzed by extracellular hydrolytic enzymes and broken down into small molecules, as a result of which the rate and extent of anaerobic fermentation are limited. This thesis discusses the application of pretreatment to destroy bacteria cell walls, dissolve intracellular organic matter and subsequently promote anaerobic fermentation for VFAs production. The main contents and results are as follows:
    The effects of several pretreatment methods, including thermal, alkaline and ultrasonic pretreatments, as well as their combinations, on anaerobic fermentation for VFAs production were investigated. It was found that, rather than thermal, alkaline or ultrasonic pretreatment, the combination pretreatment methods thermo-alkaline and ultrasonic-alkaline had more significant promotion effects on the SCOD increase. Both thermo-alkaline and ultrasonic-alkaline pretreatments remarkably improved solubilities of sludge carbohydrate and protein, therefore these pretreatments provided adequate substrate for anaerobic fermentation of VFAs production. The yields of total VFAs from the thermo-alkaline and ultrasonic-alkaline pretreated sludge achieved 3.55 g/L and 3.36 g/L after 48 h and 60 h anaerobic fermentation respectively, which were higher than the other pretreatment methods.
    Uniform design method was adopted to optimize the conditions of thermo-alkaline preatreatment, which influenced VFAs production during anaerobic fermentation, including NaOH addition, pretreatment temperature and pretreatment time. The results showed that, when NaOH addition 14 g/L, pretreatment temperature 90 ℃ and pretreatment time 120 min, which meaned every factor took the maximum value, the SCOD, soluble carbohydrate and soluble protein concentration were the highest. However, under these conditions VFAs production during anaerobic fermentation was still limited. The maximum yield of VFAs was 3.68 g/L after anaerobic fermentation for 48 h when the pretreatment conditions were NaOH addition 3 g/L, pretreatment temperature 60 ℃ and pretreatment time 90 min.
    In order to obtain the optimal conditions of thermo-alkaline preatreatment, parametric studies of the pretreatment process were conducted with respect to NaOH addition, pretreatment temperature and pretreatment time. The results indicated that, all of SCOD, soluble carbohydrate and protein concentration increased with increaing of NaOH addition, pretreatment temperature or pretreatment time. The optimal conditions of thermo-alkaline preatreatment for VFAs production were NaOH addition 2 g/L, pretreatment temperature 70 ℃ and pretreatment time 60 min, with a total VFAs production reaching a maximal concentration up to 4.100 g/L after 48 h fermentation.
     [参考文献]:     [1]. 余杰, 田宁宁. 我国污泥处理处置有关政策探讨分析[J]. 水工业市场. 2009, 9(3): 7-9.
    [2]. 赵庆祥. 污泥资源化技术[M]. 北京: 化学工业出版社, 2002.
    [3]. Canales A, Pareilleux A, Rols J L, et al. Decreased sludge production strategy for domestic wastewater treatment[J]. Water Science and Technology. 1994, 30(8): 97-106.
    [4]. 金儒霖, 刘永龄. 污泥处置[M]. 北京: 中国建筑工业出版社, 1982.
    [5]. 赵乐军, 戴树桂, 辜显华. 污泥填埋技术应用进展[J]. 中国给水排水. 2004, 20(4): 27-30.
    [6]. 周旭红, 郑卫星, 祝坚,等. 污泥焚烧技术的研究进展[J]. 能源环境保护. 2008, 22(4): 5-8.
    [7]. 唐小辉, 赵力. 污泥处置国内外进展[J]. 环境科学与管理. 2005, 30(3): 69-70.
    [8]. 刘和, 堵国成, 陈坚. 我国应用生物技术资源化利用城市剩余污泥的研究进展[J]. 化工进展. 2008, 27(8): 1137-1142.
    [9]. 夏朝辉, 张慧俐, 武臻. 我国剩余活性污泥资源生态化利用浅谈[J]. 河南化工. 2005, 22(1): 44-45.
    [10]. 昝元峰, 王树众, 沈林华,等. 污泥处理技术的新进展[J]. 中国给水排水. 2004, 20(6): 25-28.
    [11]. 张立峰, 吕荣湖. 剩余活性污泥的热化学处理技术[J]. 化工环保. 2003, 23(3): 146-149.
    [12]. 郑立辉, 司梅芳, 李磊. 剩余污泥处理与资源化研究进展[J]. 污染防治技术. 2008, 21(1): 66-68.
    [13]. 张自杰, 林荣忱, 金儒霖. 排水工程[M]. 北京: 中国建筑工业出版社, 2000.
    [14]. 白慧玲. 城市污泥处置与利用综述[J]. 山西建筑. 2008, 34(20): 180-181.
    [15]. Randall A A, Benefield L D, Hill W E, et al. The effect of volatile fatty acids on enhanced biological phosphorus removal and population structure in anaerobic/aerobic sequencing batch reactors[J]. Water Science and Technology. 1997, 35(1): 153-160.
    [16]. Lemos P C, Serafim L S, Reis M A M. Synthesis of polyhydroxyalkanoates from different short-chain fatty acids by mixed cultures submitted to aerobic dynamic feeding[J]. Journal of Biotechnology. 2006, 122(2): 226-238.
    [17]. Rozzi A, Remigi E. Methods of assessing microbial activity and inhibition under anaerobic conditions: a literature review[J]. Reviews in Environmental Science and Biotechnology. 2004, 3(2): 93-115.
    [18]. Eastman J A, Ferguson J F. Solubilization of Particulate Organic Carbon during the Acid Phase of Anaerobic Digestion[J]. Water Pollution Control Federation. 1981, 53(3): 266-352.
    [19]. Parkin G F, Owen W F. Fundamentals of anaerobic digestion of wastewater sludge[J]. Journal of Environmental Engineering. 1986, 112(5): 867-920.
    [20]. Cetin S, Erdincler A. The role of carbohydrate and protein parts of extracellular polymeric substances on the dewaterability of biological sludges[J]. Water Science and Technology. 2004, 50(9): 49-56.
    [21]. 任南琪, 王爱杰. 厌氧生物技术原理与应用[M]. 北京: 化学工业出版社, 2004.
    [22]. Bolzonella D, Fatone F, Pavan P, et al. Anaerobic Fermentation of Organic Municipal Solid Wastes for the Production of Soluble Organic Compounds[J]. Industrial and Engineering Chemistry Research. 2005, 44(10): 3412-3418.
    [23]. Min K S, Khan A R, Kwon M K. Acidogenic fermentation of blended food-waste in combination with primary sludge for the production of volatile fatty acids[J]. Journal of Chemical Technology and Biotechnology. 2005, 80(8): 909-915.
    [24]. Elefsiniotis P, Oldham W K. Influence of pH on the acid-phase anaerobic digestion of primary sludge[J]. Journal of Chemical Technology and Biotechnology. 2004, 60(1): 89-96.
    [25]. Banerjee A., Elefsiniotis P., Tuhtar D. The effect of addition of potato-processing wastewater on the acidgenesis of primary sludge under varied hydraulic retention time and temperature[J]. Journal of Biotechnology. 1999, 72 (3): 203-212.
    [26]. Chen Y, Jiang S, Yuan H, et al. Hydrolysis and acidification of waste activated sludge at different pHs[J]. Water Research. 2007, 41 (3): 689-683.
    [27]. 张希衡. 废水厌氧生物处理工程[M]. 北京: 中国环境科学出版社, 1996.
    [28]. 周洪波, 陈坚. 产酸相中氧化还原电位控制及其对葡萄糖厌氧发酵产物的影响[J]. 中国沼气. 2000, 18(4): 20-23.
    [29]. 郑元景, 沈永明, 沈光范. 污水厌氧生物处理[M]. 北京: 中国建筑工业出版社, 1988.
    [30]. Nah I W, Kang Y W, Hwang K Y, et al. Mechanical pretreatment of waste activated sludge for anaerobic digestion process[J]. Water Research. 2000, 34(8): 2362-3611.
    [31]. 霍贞, 王芬, 季民. 污泥破解技术的研究与进展[J]. 工业水处理. 2005, 25(9): 16-20.
    [32]. 胡亚冰, 张超杰, 谭学军, 等. 强化污泥厌氧消化预处理技术的研究进展[J]. 安徽农业科学. 2009, 47(4): 1737-1739.
    [33]. Petrier C, Francony A. Incidence of wave-frequency on the reaction rates during ultrasonic wastewater treatment[J]. Water Science and Technology. 1997, 35(4): 175-180.
    [34]. Tiehm A, Nickel K, Zellhorn M, et al. Ultrasonic waste activated sludge disintegration for improving anaerobic stabilization[J]. Water Research. 2001, 35(8): 2003-2009.
    [35]. 肖本益, 阎鸿, 魏源送. 污泥热处理及其强化污泥厌氧消化的研究进展[J]. 环境科学学报. 2009, 29(4): 673-682.
    [36]. 肖本益, 刘俊新. 不同预处理方法对剩余污泥性质的影响研究[J]. 环境科学. 2008, 29(2): 327-331.
    [37]. Hamer A, Mason C A, Hamer G. Death and lysis during aerobic thermophilic sludge treatment: characterization of recalcitrant products[J]. Water Research. 1994, 28(4): 863-869.
    [38]. 王治军, 王伟, 张锡辉. 处理污泥的”热水解-ASBR”组合工艺研究[J]. 北京大学学报(自然科学版). 2006, 42(6): 746-750.
    [39]. 张少辉, 华玉妹. 污泥厌氧消化的强化处理技术[J]. 环境保护科学. 2004, 30(125): 13-15.
    [40]. Déléris S, Paul E, Audic J M. Effect of Ozonation on Activated Sludge Solubilization and Mineralization[J]. Ozone: Science and Engineering. 2000, 22(5): 473-486.
    [41]. Yuan H, Chen Y, Zhang H, et al. Improved bioproduction of short-chain fatty acids (SCFAs) from excess sludge under alkaline conditions[J]. Environmental Science and Technology. 2006, 40(6): 2025-2029.
    [42]. Kim J S, Park C W, Kim T H, et al. Effects of various pretreatments for enhanced anaerobic digestion with waste activated sludge[J]. Journal of Bioscience and Bioengineering. 2003, 95(3): 271-275.
    [43]. Par k C, Lee C, Kim S, et al. Upgrading of anaerobic digestion by incorporating two different hydrolysis processes[J].Journal of Bioscience and Bioengineering. 2005, 100(2): 164-167.
    [44]. 杨洁, 季民, 韩育宏, 等. 污泥碱解和超声破解预处理的效果研究[J]. 环境科学, 2008, 29(4): 1002-1006.
    [45]. Zawieja I, Wolny L, Wolski P. Influence of excessive sludge conditioning on the efficiency of anaerobic stabilization process and biogas generation[J]. Desalination. 2008, 222(1-3): 374-381.
    [46]. Tanaka S, Kobayashi T, Kamiyama K, et al. Effects of thermochemical pretreatment on the anaerobic digestion of waste activated sludge[J]. Water Science and Technology. 1997, 35(8): 209-215.
    [47]. Vlyssides A G, Karlis P K.Thermal-alkaline solubilization of waste activated sludge as a pre-treatment stage for anaerobic digestion[J]. Bioresource Technology. 2004, 91(2): 201-206.
    [48]. 国家环保局, 《水和废水监测分析方法》编委会. 水和废水监测分析方法(第三版)[M]. 北京: 中国环境科学技术出版社, 1989.
    [49]. Dubois M., Gilles K A, Hamilton J K, et al. Colorimetric method for determination of sugars and related substances[J]. Analytical Chemistry, 1956, 28(3): 350-356.
    [50]. Bradford M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding[J]. Analytical Biochemistry. 1976, 72(1): 248-254.
    [51]. 王治军, 王伟. 剩余污泥的热水解试验[J]. 中国环境科学. 2005, 25(B6): 56-60.
    [52]. 刘春红, 苏春江, 杨顺生. 超声波处理的污泥厌氧消化能量效率[J]. 武汉大学学报(理学版). 2008, 54(2): 188-192.
    [53]. 肖本益, 刘俊新. 污水处理系统剩余污泥碱处理融胞效果研究[J]. 环境科学. 2006, 2(2): 329-323.
    [54]. 梁鹏, 黄霞, 钱易, 等. 污泥减量化技术的研究进展[J]. 环境污染治理技术与设备. 2003, 4(1): 44-52.
    [55]. Neyens E, Baeyens J, Creemers C. Alkaline thermal sludge hydrolysis[J]. Journal of Hazardous Materials. 1976, 72(1): 248-254.
    [56]. Valo A, Carrere H, Delgenes J P. Thermal, chemical and thermo-chemical pre-treatment of waste activated sludge for anaerobic digestion[J]. Journal of Chemical Technology and Biotechnology. 2004, 79(11): 1197-1203.
    [57]. 王治军, 王伟, 李芬芳. 污泥热水解技术的发展及应用[J] 中国给水排水. 2003, 19(10): 25-27.
    [58]. 王芬,季民. 剩余污泥超声破解的性能研究[J] 农业环境科学学报. 2004, 23(3): 584-587.
    [59]. Ramsay I R, Pullammanappallil P C. Proteins degradation during anaerobic wastewater treatment: derivation of stoichiometry[J]. Biodegradation. 2001, 12(4): 247-257.
    [60]. 李云雁, 胡传荣. 试验设计与数据处理[M]. 北京: 化学工业出版社, 2005.
    [61]. Martins S. A review of Maillard reaction in food and implications to kineticmodelling[J]. Trends in food science and technology. 2000, 11(9-10): 364-373.
    [62]. 周群英, 高延耀. 环境工程微生物学[M]. 北京: 高等教育出版社, 2000.
    [63]. Katsiris N, Kouzeli-Katsiri A. Bound water content of biological sludges in relation to filtration and dewatering[J]. Water research. 1987, 21(11): 1319-1327.
    [64]. Wang Q H, Noguchi C., Hara Y., et al. Studies on Anaerobic Digestion Mechanism: Influence of Pretreatment Temperature on Biodegradation of Waste Activated Sludge[J]. Environmental Technology, 1997, 18(10): 999-1008.
    [65]. Hamers A, Mason C A, Hamer G. Death and lysis during aerobic thermophilic sludge treatment; characterization of recalcitrant products[J]. Water research. 1994, 28(4): 863-869.
    [66]. Bougrier C, Delgenes J P, Carrere H. Effects of thermal treatments on five different waste activated sludge samples solubilisation, physical properties and anaerobic digestion[J]. Chemical Engineering Journal. 2008, 139(2): 236–244.
    [67]. 徐锐, 曾玮, 温康文. 高盐污水生物处理技术浅探[J]. 广东化工. 2008, 35(11): 90-91.
    [68]. Sung S H, Liu T. Ammonia inhibition on thermophilic anaerobic digestion[J]. Chemosphere. 2003, 53(1): 43-52.
    [69]. 杜长安, 陈复生, 武文斌, 等. 植物蛋白工艺学[M]. 北京: 中国商业出版社, 1995.
    [70]. Parawira W, Murto M, Read J S, et al. Volatile fatty acid production during anaerobic mesophilic digestion of solid potato waste[J]. Journal of Chemical Technology and Biotechnology. 2004, 79(7): 673-677.
    [71]. Wang Q H, Kuninobu M; Ogawa H I, et al. Degradation of volatile fatty acids in highly efficient anaerobic digestion[J]. Biomass and Bioenergy. 1999, 16(6): 407-416.
        
关于我们 | 老师招聘 | 版权声明 | 联系我们 | 付款方式 | 返回顶部 | 

COPYRIGHT ©2001 - 2013 51LUNWEN.NET. ALL RIGHTS RESERVED.
【免责声明】:本网站所提供的信息资源如有侵权、违规,请及时告知
无忧论文网提供毕业论文指导 硕士论文指导服务